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ABSTRACT

NASA’s Kepler mission promises to detect transiting Earth-sized planets in the habitable zones of solar-
like stars. In addition, it will be poised to detect the reflected light component from close-in extrasolar giant
planets (CEGPs) similar to 51 Peg b. Here we use the Dual Irradiance Absolute Radiometer aboard the Solar
Heliospheric Observatory time series along with models for the reflected light signatures of CEGPs to evaluate
Kepler’s ability to detect such planets. We examine the detectability as a function of stellar brightness, stellar
rotation period, planetary orbital inclination angle, and planetary orbital period and then estimate the total
number of CEGPs that Kepler will detect over its four-year mission. The analysis shows that intrinsic stellar
variability of solar-like stars is a major obstacle to detecting the reflected light from CEGPs. Monte Carlo
trials are used to estimate the detection threshold required to limit the total number of expected false alarms
to no more than one for a survey of 100,000 stellar light curves.Keplerwill likely detect 100–760 51 Peg b–like
planets by reflected light with orbital periods up to 7 days.
Subject headings:methods: data analysis — planetary systems — techniques: photometric

1. INTRODUCTION

The discovery of 51 Peg b by Mayor & Queloz et al.
(1995) ignited a firestorm in the astronomical community.
Eight years later, over 100 extrasolar planets have been
found, including multiple-planet systems (Butler et al. 1999)
and planets in binary systems (Cochran et al. 1997). The
quest for extrasolar giant planets has moved beyond the
question of detecting them to the problem of studying their
atmospheres. Shortly after the seminal discovery of 51 Peg
b, attempts were made to detect spectroscopically the light
reflected from extrasolar planets in short-period orbits
(Cameron et al. 1999; Charbonneau et al. 1999). To date, no
solid detection of the reflected light component has been
reported for any extrasolar planet, although Charbonneau
et al. (2002) report the detection of a drop in the sodium line
intensity from the atmosphere of HD 209458b during a
transit of its parent star.

The lack of a reflected light component detection is
puzzling since a planet exhibiting a Lambert-like phase
function with an albedo similar to that of Jupiter should be
detectable. The work of Seager, Whitney, & Sasselov (2000)
provides a possible reason for the lack of detections: realis-
tic model atmospheres could be significantly less reflective
than would be expected from a Lambert sphere.

Efforts to detect the periodic reflected light components
of extrasolar giant planets (CEGPs) might be forced to
wait for the first generation of space-based photometers, of
which several are scheduled to be launched in the near
future.

The CanadianMOST (Microvariablity and Oscillations of
Stars), the Danish MONS (Measuring Oscillations in
Nearby Stars; Perryman 2000), and the CNES mission
COROT (Convection and Rotation; Schneider et al. 1998) all
promise to study the minuscule photometric variations indi-
cative of acoustic oscillations in nearby stars, effectively

peering within their hearts to reveal their internal structure.
These missions will be able to study the intrinsic stellar
variations of the stars they target, much as the p-modes of
the Sun have been studied by the ESA Solar Heliospheric
Observatory (SOHO) mission (Fröhlich et al. 1997). If the
stellar variability does not prove insurmountable, some of
these missions may well be able to detect the reflected light
components of the previously discovered CEGPs. In gen-
eral, the time spent on each target star will not allow these
missions to discover new planets this way, although
COROT has the best chance of doing so, as it surveys a field
of stars for several months at a time, rather than observing a
single star at a time. There are, however, larger, more ambi-
tious photometric missions on the horizon. Both NASA’s
Kepler mission and ESA’s Eddington mission will be
launched in 2007 to search for Earth-sized planets transiting
solar-like stars. The exquisite photometric precision prom-
ised by these two missions (better than 2! 10"5 on time-
scales of #1 day) will not only allow for discovery of
transiting planets and stunning asteroseismology but might
also produce a significant number of detections of the
reflected light from CEGPs.

The reflected light signature of an extrasolar planet
appears uncomplicated at first, much like the progression of
the phases of the moon. As the planet swings along its orbit
toward opposition, more of its starlit face is revealed,
increasing its brightness. Once past opposition, the planet
slowly veils her lighted countenance, decreasing the amount
of light reflected toward an observer. As the fraction of the
visible lighted hemisphere varies, the total flux from the
planet-star system oscillates with a period equal to the plan-
etary orbital period. Seager et al. (2000) showed that the
shape of the reflected light curve is sensitive to the assumed
composition and size of the condensates in the atmosphere
of a CEGP. While this presents an opportunity to learn
more about the properties of an atmosphere once it is
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discovered, it makes the process of discovery more complex:
the reflected light signatures are not as readily characterized
as those of planetary transits, so that an ideal matched filter
approach does not appear viable. The signatures from
CEGPs are small (<100 parts per million [ppm]) compared
with the illumination from their stars, requiring many cycles
of observation to permit their discovery. This process is
complicated by the presence of stellar variability, which
imposes its own variations on the mean flux from the star.
Older, slowly rotating stars represent the best targets. They
are not as active as their younger counterparts, which are
prone to outbursts and rapid changes in flux as starspots
appear, evolve, and cross their faces. In spite of these
difficulties, a periodogram-based approach permits the
characterization of the detectability of CEGPs from their
reflected light component.

Our study of this problem began in 1996 in support of the
proposed Kepler mission1 to the NASA Discovery program
(Borucki et al. 1996; L. R. Doyle 1996, personal communi-
cation). That study used measurements of solar irradiance
by the Active Cavity Radiometer for Irradiance Monitoring
radiometer aboard the Solar Maximum Mission; Willson &
Hudson 1991), along with a model for the reflected light sig-
nature based on a Lambert sphere and the albedo of Jupiter.
Here we significantly extend and update the previous
preliminary study by using measurements by the Dual
Irradiance Absolute Radiometer (DIARAD), an active cav-
ity radiometer aboard SOHO (Fröhlich et al. 1997), along
with models of light curves for 51 Peg b–like planets devel-
oped by Seager et al. (2000). For completeness, we include
Lambert sphere models of two significantly different geo-
metric albedos, p ¼ 0:15 and p ¼ 2

3. The SOHO data are
relatively complete, extend over a period of 5.2 yr, are
evenly sampled at 3 minutes, a rate comparable to that for
Kepler’s photometry (15 minutes), and have the lowest
instrumental noise of any comparable measurement of solar
irradiance. Seager et al. (2000) provide an excellent paper
describing reflected light curves of CEGPs in the visible por-
tion of the spectrum. However, they do not consider the
problem of detecting CEGP signatures in realistic noise
appropriate to high-precision space-based photometers.

The current article complements our study of the impact
of solar-like variability on the detectability of transiting
terrestrial planets for Kepler (Jenkins 2002). The observ-
ational noise encountered in the detection of transiting
small planets and in the detection of the reflected light com-
ponent of CEGPs is the same: only the shape, timescale, and
amplitude of the signal of interest have changed. We have
also conducted a more thorough analysis of the false alarm
rates and the requisite detection thresholds than that per-
formed in our preliminary study and have developed a
detection scheme to accommodate the nonsinusoidal nature
of the reflected light curves produced by CEGPs. In this
paper, our focus is on the Kepler mission because of our
familiarity with its design parameters and its expected
instrumental noise component, although the results should
apply to other missions with similar apertures, instrumental
noise, andmission durations.

In this study, we analyze different combinations of model
planetary atmospheres, stellar rotation periods, and stellar
apparent magnitudes, examining the detectability of each
case over a range of orbital inclinations I from edge-on

(I ¼ 90%) to nearly broadside (I ¼ 10%), and over orbital
periods Tp from 2 to 7 days. The brightnesses considered for
the stars range from mR ¼ 9:0 to mR ¼ 15:0, which dictate
the corresponding shot and instrument noise for the Kepler
target stars. To simulate the reflected component of the light
curve we use two atmospheric models developed by Seager
et al. (2000): one for clouds with mean particle radius !rr of
0.1 lm, consisting of a mixture of Fe, MgSiO3, and Al2O3,
and another for clouds with the same mixture but !rr ¼ 1:0
lm. We also consider two Lambert sphere models, one with
maximum reflectivity and one with a geometric albedo of
0.15 (corresponding to the case of Mars). Different models
of stellar variability are considered, all based on the DIA-
RAD/SOHO time series, which were resampled and scaled
to obtain synthetic light curves for stars with rotation
periods between 5 and 40 days as per Jenkins (2002). For
each set of parameters, a periodogram analysis yields the
expected detection statistic for a 1.2 Jovian radius (RJ)
planet. The appropriate detection thresholds and resulting
detection rates are determined fromMonte Carlo runs using
the same detection procedure applied to white Gaussian
noise (WGN) sequences. The resulting detection rates are
averaged over all orbital inclinations and over the expected
distribution of CEGP orbital periods and are then used in
conjunction with a model distribution of main-sequence
stars in Kepler’s field of view (FOV) to estimate the total
number of CEGPs detected by reflected light. The results
indicate that Kepler should detect 100–760 CEGPs in orbits
with periods up to 7 days around old quiet solar-like stars.
These detections will not occur in the first weeks of the
mission because of the low amplitudes of the planetary
signatures. Rather, they will accumulate steadily over the
course of the mission.

The paper is organized as follows: We present the
DIARAD/SOHO measurements of solar variability in x 2,
followed by a discussion of the light-curve models of Seager
et al. (2000) for the reflected light component from CEGPs in
x 3. A summary of theKeplermission is given in x 4. Section 5
describes the Galactic model for the distribution of Kepler’s
target stars used to optimize the proposed detection
algorithm and analyze its performance. Our approach to
detecting strictly periodic signals in noise, setting detection
thresholds, and assessing detection rates is given in x 6.
Monte Carlo experiments conducted to establish false alarm
rates and the requisite detection thresholds are discussed in
x 7. The expected number of detections is presented in x 8. A
discussion of sources of confusion and methods to reject false
positives is given in x 9. We conclude in x 10 by summarizing
the findings and giving suggestions for future work.

2. DIARAD/SOHO OBSERVATIONS

To study the capabilities of missions such as Kepler, we
take measurements from the DIARAD instrument aboard
the SOHO spacecraft as a proxy for all solar-like stars.
DIARAD is a redundant, active-cavity radiometer aboard
SOHO that measures the white-light irradiance from the
Sun every 3 minutes (Fröhlich et al. 1997). The DIARAD
measurements considered here consist of 5.2 yr of data that
begin near solar minimum in 1996 January and extend to
2001 March, just past solar maximum. The data are not
pristine: there are gaps in the data set, the largest of which
lasts 104 days, and there are obvious outliers in the data.
Nevertheless, the DIARAD time series is the most1 See http://www.kepler.arc.nasa.gov.
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uniformly sampled, lowest-noise data set available. Once it
is binned to Kepler’s sampling rate (4 hr"1), fully 83% of the
data samples are available (62% of the missing points are
represented by the three largest data gaps). We have taken
the liberty of removing the obvious outliers and filled in the
missing data as per Jenkins (2002) in such a way as to
preserve the correlation structure of the underlying process.

Ground-based observations show that solar-type stars
rotating faster than the Sun are more magnetically active,
increasing the photometric variability over a range of time-
scales. These observations generally consist of sparse irregu-
larly sampled time series with usually no more than one
measurement per star per night; thus, it is difficult to use
these observations to study the distribution of variability on
timescales shorter than a few days. They do, however, pro-
vide an indication of the appropriate scaling relation to use
on timescales greater than 1 day. Figure 7 of Radick et al.
(1998) indicates that photometric variability, !phot, on time-
scales shorter than a year is related to the chromospheric
activity level parameter,R0

HK, by a power law with exponent
1.5. Other observations (Noyes et al. 1984) suggest that
R0

HK is approximately inversely proportional to stellar
rotation period, Prot, so that

!phot / P"1:5
rot : ð1Þ

This scaling relation is used to scale the variability of the
DIARADmeasurements on timescales longer than 2 days.

The DIARAD measurements themselves represent a
means by which the timescale-dependent response of solar-
like stars to increased magnetic activity can be estimated. At

solar maximum (with high magnetic activity levels),
variability at long timescales increases significantly relative
to solar minimum, while it remains comparatively constant
on timescales of hours (see Fig. 2 of Jenkins 2002). Synthetic
time series can be generated by transforming the DIARAD
time series into the wavelet domain, scaling each timescale
component by a factor that is 1 at the shortest timescales
and ramps up to the value indicated by the ground-based
measurements for timescales (2.66 days, after which the
time series is resampled onto an appropriate grid (Jenkins
2002). This procedure represents our best estimate of how
the stellar rotation period should affect the photometric var-
iability of solar-like stars. We do not expect this model to be
accurate over a wide range of stellar types. It probably is
only indicative of the expected effects over stellar types near
the Sun (G1–G4). Warmer late-type stars generally exhibit
less spotting and consequently lower !phot, while cooler late-
type stars exhibit more spotting and higher !phot for a given
Prot (see, e.g., Messina, Rodono, & Guinan 2001). Warmer
late-type stars, however, are also larger, requiring a larger
planet to achieve the same signal-to-noise ratio for a given
photometric variability, while cooler late-type stars are
smaller, mitigating the increased variability for a given size
planet to some degree. This analysis does not include the
effects of flare events, which exhibit transient signatures on
timescales of minutes (more frequently) to a few hours
(more rarely), the frequency of which increases significantly
for rapid rotators.

Figure 1a shows a portion of the power spectral density
(PSD) for the Sun from a frequency of 0 to 2.5 day"1. Figure
1b shows a smoothed version of the same solar PSD along
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Fig. 1.—Power spectral density (PSD) estimates for solar-like variability and signatures of three extrasolar giant planets. (a) Hanning-windowed
periodograms for a combination of the first 4 years of the DIARAD data set and three reflected light CEGP signatures. The three planetary signatures are for
1.2 RJ planets with atmospheres composed of 1.0 lm particles in a 4 day orbit, a planet with 0.1 lm particles in a 2.9 day orbit, and a 4.6 day Lambert sphere
with albedo p ¼ 2

3. The planetary signatures consist of impulse trains with their harmonic components denoted by the labels ‘‘ a,’’ ‘‘ b,’’ and ‘‘ c,’’ respectively.
The noise fluctuations in PSD estimates are quite evident in (a). Three solar-like PSDs are displayed in (b), along with a combination of these same planetary
signatures and a 26.6 day period, solar-like star. The stellar PSDs have been smoothed by a 21-point moving-median filter (0.015 day"1 wide) followed by a
195-point moving-average filter (0.14 day"1 wide) to illustrate the average background noise. This is the procedure used by the proposed detector to estimate
the background stellar PSDs prior to whitening the observed periodograms. The solid curve corresponds to the DIARAD data in (a) (Prot ¼ 26:6 days), while
the dashed and dash-dotted curves are for solar-like stars with rotation periods of 20 and 35 days, respectively, demonstrating the dependence of stellar
variability on stellar rotation period. Three harmonic components of the planet with 0.1 lm particles (solid lines labeled ‘‘ a ’’) are visible above the noise in (a),
while seven components of the planet with 1.0 lm particles are visible (dashed lines labeled ‘‘ b ’’). Only two components (dotted lines labeled ‘‘ c ’’) of the p ¼ 2

3
Lambert sphere are visible; thus, it should be possible to constrain the particle size distribution and composition of a CEGP atmosphere by the number of
detected Fourier components. On this scale, the planetary signatures appear as vertical line segments, though they are actually distributed over a few
frequency bins.
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with PSDs for solar-like stars with rotation periods of 20
and 35 days. The stellar PSDs in Figure 1b have been
smoothed by a 21-point moving-median filter (0.015 day"1

wide), followed by a 195-point moving-average filter (0.14
day"1 wide) to emphasize the average background noise.
The effect of decreasing Prot is to increase the low-frequency
noise and the frequency at which the PSD rolls off. The PSD
for the Sun falls rapidly from 0 to 0.25 day"1, then gradually
flattens out so that it is nearly level by 1 day"1. Most power
occurs at frequencies less than 0.1 day"1, corresponding to
the rotation of sunspots and solar cycle variations (Frölich
1987). On timescales of a few hours to a day, power is
thought to be dominated by convection-induced processes
such as granulation and supergranulation (Rabello-Soares
et al. 1997; Andersen et al. 1998). At #288 day"1, beyond
the axis limits of the figure, the so-called p-modes
corresponding to acoustic resonances can be observed with
typical amplitudes of 10 ppm.

3. ATMOSPHERIC MODELS AND SYNTHETIC
REFLECTED LIGHT SIGNATURES

Motivated by the upcoming microsatellite missions for
studying asteroseismology, Seager et al. (2000) investigated
the optical photometric reflected light curves expected for
CEGPs. Their model code solves for the emergent planetary
flux and temperature-pressure structure in a self-consistent
fashion. The solution is found while simultaneously satisfy-
ing hydrostatic equilibrium, radiative and convective
equilibrium, and chemical equilibrium in a plane-parallel
atmosphere, with the impinging stellar radiation setting the
upper boundary conditions. A three-dimensional Monte
Carlo code computes the photometric light curves by using
the solution for the atmospheric profiles. For the Gibbs
free-energy calculations, they include 27 elements, 90 gas-
eous species, and four solid species. These include the most
important species for brown dwarfs and cool stars. The con-
densates, solid Fe, MgSiO3, and Al2O3 are likely to be
present in the outer atmospheres of the CEGPs. Four mean
sizes of condensates are considered, spanning a large frac-
tion of the range of sizes observed in planetary atmospheres
in the solar system: 0.01–10 lm. Seager et al. (2000) empha-
size that their study is a preliminary one, as significant
improvements can be made in cloud modeling, atmospheric
circulation and heat transport, photochemistry, and the
inclusion of other condensates. Indeed, work to incorporate
more realistic physics into these models is ongoing (Green,
Mathews, & Seager 2002) but has not resulted in significant
revisions in the general shape or amplitudes of the reflected
light signatures (S. Seager 2002, private communication).
Therefore, the published photometric light curves represent
a sufficient starting point for investigating the detectability
of the reflected light signatures of CEGPs and are signifi-
cantly better than what can be obtained by using a Jupiter-
like albedo and a simple analytic model such as a Lambert
sphere.

Seager et al. (2000) find that the amplitude of the reflected
light curves from CEGPs is significantly lower than that due
to a Lambert sphere, which yields a signal as high as 83 ppm
for a 1.2 RJ planet in a 0.051 AU orbit about a G2 star.
Instead, they predict a peak flux of 22 ppm for an atmo-
sphere consisting of a distribution of particles with a mean
radius of 0.1 lm in a uniform cloud consisting of a mixture
of Fe, MgSiO3, and Al2O3 at a wavelength of 0.55 lm. The

scattering from these particles is at the upper limit of the
Rayleigh regime, so the resulting light curve is relatively
smooth. For an atmosphere composed of !rr ¼ 1:0 lm par-
ticles, the scattering is well into the Mie regime, resulting in
a strong central peak of 52 ppm centered at opposition,
mainly due to backscattering from the MgSIO3 particles at
low phase angles and forward diffraction of all particles at
higher phase angles, creating the steep wings at intermediate
phase angles. Seager et al. (2000) also remark that an
atmosphere with stratified cloud layers would likely result
in significantly higher flux reflected from the planet, as the
top-level cloud would consist of MgSiO3 because of its
cooler condensation curve. For example, for !rr ¼ 0:01 lm
particles consisting of a uniform mixture of condensates,
the amplitude of the reflected light signature is very low, 0.2
ppm, while for pure MgSIO3 it is 100 times stronger. The
case of !rr ¼ 10:0 lm results in higher amplitudes for the
reflected light signatures, both for the mix of the four con-
densates and for pure MgSiO3. Seager et al. (2000) consider
particle sizes found in planetary atmospheres in the solar
system. A !rr ¼ 0:01 lm particle size corresponds to the haze
layer above the main cloud layer in the atmosphere of
Venus, which in contrast to the haze consists of particles of
size 1 lm (Knollenberg & Hunten 1980), while the cloud
particles in Jupiter’s upper atmosphere span 0.5–50 lm
(West, Stobel, & Tomasko 1986). We therefore take the
light curves for the uniform mixture with !rr ¼ 0:1 lm and
!rr ¼ 1:0 lm as conservative cases for the purpose of
examining photometric detectability.

The light curves given by Seager et al. (2000) can be scaled
to planet-star separations different from that of 51 Peg by
noting that the reflected light component amplitude is
inversely proportional to the square of the star-planet sepa-
ration. The authors caution that the planetary atmosphere
and its cloud structure are sensitive to the insolation experi-
enced by the planet so that this scaling law may not produce
accurate results much beyond 0.05 AU or inside 0.04 AU.
They suggest, however, that the scaling law produces rough
estimates at planet-star separations as high as 0.12 AU. To
be complete, we also consider the detectability of CEGPs
whose reflected light components are better modeled as
Lambert spheres with geometric albedos p ¼ 0:15 (roughly
corresponding to that of Mars) and p ¼ 2

3 (the maximum).
These light curves would likely arise from a cloudless
atmosphere with a uniformly distributed absorbing gas
controlling the albedo.

4. KEPLER MISSION

Kepler, a recently selected NASA Discovery mission, is
designed to detect Earth-sized planets orbiting solar-like
stars in the circumstellar habitable zone. More than 100,000
target stars will be observed in the constellation Cygnus
continuously for at least 4 years at a sampling rate of 4 hr"1

(Borucki et al. 1997). Kepler’s aperture is 0.95 m, allowing
2:21! 108 e" to be collected every 15 minutes for a G2,
mR ¼ 12 dwarf star with a shot noise of 67 ppm. The instru-
ment noise itself should be # 31 ppm over this same dura-
tion. This value is based on extensive laboratory tests,
numerical studies, and modeling of the Kepler spacecraft
and photometer (Koch et al. 2000; Jenkins et al. 2000;
Remund et al. 2001). The values in Table 3 of Koch et al.
(2000) support this level of instrumental noise from a high-
fidelity hardware simulation of Kepler’s environment, while
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the numerical studies of Remund et al. (2001) are based on a
detailed instrumental model. This model includes noise
terms such as dark current, read noise, amplifier and elec-
tronics noise sources, quantization noise, spacecraft jitter
noise, noise from the shutterless readout, cosmic-ray hits,
radiation damage accumulated over the lifetime of the
mission, and the effects of charge transfer efficiency.

To simulate the combined effects of the shot noise and
instrumental noise for Kepler, white Gaussian noise (WGN)
sequences were added to the DIARAD time series with a
standard deviation equal to the square root of the combined
shot and instrumental variance for a star at a given magni-
tude less the square of the DIARAD instrumental uncer-
tainty (0.1Wm"2 in each 3 minute DIARADmeasurement;
S. Dewitte 1999, private communication). For example, the
combined instrumental and shot noise for a mR ¼ 12 star
at the 15 minute level is #74 ppm, but the DIARAD
instrumental noise is #33 ppm, so the appropriate standard
deviation for theWGN sequence is 66 ppm.

The Kepler mission should not suffer from large time
gaps. Roll maneuvers are planned about every 90 days to
reorient the sunshade and the solar panels, resulting in a loss
of#1% of the total data. While the simulations discussed in
x 6 do not include the effect of the missing data, it should be
small and can be accommodated directly into a tapered
spectrum estimate as per Walden, Percival, & McCoy
(1998).

5. GALACTIC MODEL FOR THE DISTRIBUTION OF
KEPLER TARGET STARS

Along with characterizations of stellar variability as a
function of stellar rotation period, Prot, and a characteriza-
tion of the observation noise for Kepler, we require a model
for the distribution ofKepler’s main-sequence target stars as
functions of apparent magnitude, spectral type, and age.
Combined with a characterization of the detectability of
CEGPs with respect to apparent brightness and Prot, the
stellar distribution allows for the performance of the pro-
posed detector to be optimized and evaluated (x 6 and x 7).
In addition, a model of the distribution of dim background
stars in the FOV permits an analysis of the problem of
confusion (x 9).

Following Batalha et al. (2002), we make use of Galactic
models made publicly available by the Observatoire de
Besançon2 (see, e.g., Robin & Crézé 1986; Haywood,
Robin, & Crézé 1997a, 1997b) to obtain expected main-
sequence star counts as a function of apparent magnitude,
spectral type, and age. The USNO-A2.0 database yields
223,000 stars to mR ¼ 14:0 in the 106 deg2 of Kepler’s FOV
(D. Koch 2001, private communication). This establishes an
appropriate mean extinction of #1.0 mag kpc"1 for the
Besançon model. We note, however, that the bandpass for
Kepler extends from #0.45 to #0.85 lm, which is far wider
than the bandpasses available for the Besançon models. For
the purpose of counting stars, using the R band should
reflect the number of stars of greatest interest but may tend
to undercount the number of late main-sequence stars. The
age-rotation relation formulated by Kawaler (1989) then
permits us to rebin the star counts obtained from the Besanç
on model with respect to rotation period rather than stellar

age, for which we can evaluate the expected detection rates.
This relation is given by

logProt ¼ 0:5 log t0 þ 0:390ðB" VÞ þ 0:824 ; ð2Þ

where Prot is the stellar rotation period in days, t0 is the
stellar age in gigayears, and B and V are the blue and visible
photometric brightnesses in the Johnson UBVRI system,
respectively. For this exercise, the apparent magnitudes
were binned into 1 mag intervals with central values from
mR ¼ 9:5 to 14.5, the spectral type bins were centered on
spectral types B5, A5, F5, G5, K5, andM5, and the rotation
periods were binned into 5 day intervals from 5 to 40 days.
Stars rotating with periods outside this range were set to the
respective edge bin values.

Table 1 gives the number of stars in each spectral type
and apparent magnitude bin. The Observatoire de Besanç
on Galactic model estimates that there are #80,000 main-
sequence stars to mR ¼ 14:0 and #220,000 main-sequence
stars tomR ¼ 15:0 in Kepler’s FOV. Other models exist that
predict higher fractions of main-sequence stars (D. Koch
2002, private communication), so that this is a reasonably
conservative starting point. There are 14 extrasolar planets
currently known with orbital periods less than 7 days: four
with periods of nearly 3.0 days, and four with periods of
#3.5 days, and the remaining six are approximately uni-
formly distributed between P ¼ 4 and 6.4 days. About
0.75% of solar-like stars possess planets with periods
between 3 and 5 days (Butler et al. 1999), which we scale to
0.875% since two of the CEGPs for our model distribution
have periods greater than 5 days. Taking this value for the
fraction of target stars that possess CEGPs, we obtain the
results listed in Table 2, for a total of 693 planets to
mR ¼ 14:0 and 1807 planets to mR ¼ 15:0. Of these, #10%

2 See http://www.obs-besancon.fr/www/modele.

TABLE 1

Modeled Number of Main-Sequence Stars in Kepler’s Field of View

Spectral Type

mR B5 A5 F5 G5 K5 M5 All

9.5.............. 151 299 200 86 20 0 756
10.5 ............ 481 838 706 358 80 0 2463
11.5 ............ 1002 2181 2248 1300 242 7 6979
12.5 ............ 1832 5004 7037 4189 991 46 19098
13.5 ............ 3051 10245 19796 13379 3271 167 49909
14.5 ............ 4498 18142 51098 42035 10969 611 127352
Total ...... 11014 36708 81085 61347 15573 831 206558

TABLE 2

Expected Number of Close-in Extrasolar Giant Planets in Kepler’s
Field of View

Spectral Type

mR B5 A5 F5 G5 K5 M5 All

9.5.................. 1 3 2 1 0 0 7
10.5 ................ 4 7 6 3 1 0 22
11.5 ................ 9 19 20 11 2 0 61
12.5 ................ 16 44 62 37 9 0 167
13.5 ................ 27 90 173 117 29 1 437
14.5 ................ 39 159 447 368 96 5 1114
Total .......... 96 321 709 537 136 7 1807
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should exhibit transits, as given in Table 3. The photometric
signals from these transiting planets will be huge compared
with the measurement noise, so that virtually all these
planets whose parent stars are observed by Kepler will be
detected; thus, there should be #44 CEGPs to mR ¼ 14:0
and 181 CEGPs to mR ¼ 15:0 discovered within the first
several weeks of observation. The question addressed
throughout the remainder of this paper is, How many addi-
tional planets should Kepler be able to detect by reflected
light?

6. DETECTION APPROACH

The detection of reflected light signatures of nonidealized
model atmospheres such as those predicted by Seager et al.
(2000) is more complicated than for the signature of a
Lambert sphere. The power spectrum of any periodic wave-
form consists of a sequence of evenly spaced impulses sepa-
rated by the inverse of the fundamental period. For a
Lambert sphere, over 96% of the power in the reflected light
component is contained in the fundamental (aside from the
average flux or DC component, which is undetectable
against the stellar background for nontransiting CEGPs);
thus, detecting the reflected light signature of a Lambert
sphere can be achieved by forming the periodogram of the
data, removing any broadband background noise, and
looking for anomalously high peaks. In contrast, the power
of the Fourier expansions of the Seager et al. model CEGP
light curves at high orbital inclinations is distributed over
many harmonics in addition to the fundamental because of
their nonsinusoidal shapes (see Fig. 1). How does one best
search for such a signal?3

As in the case of a pure sinusoid, a Fourier-based
approach seems most appropriate, since the Fourier trans-
form of a periodic signal is strongly related to its Fourier
series, which parsimoniously and uniquely determines the
waveform. Unlike the case for ground-based data sets that
are irregularly sampled and contain large gaps, photometric
time series obtained from space-based photometers like
Kepler in heliocentric orbits will be evenly sampled and

nearly complete. This removes much of the ambiguity
encountered in power spectral analysis of astronomical data
sets collected with highly irregular or sparse sampling; thus,
power spectral analyses using fast Fourier transforms
(FFTs) simplify the design of a detector. For the sake of this
discussion, let xðnÞ represent the light curve, where
n 2 f0; . . . ;N " 1g is an N-point time series with a corre-
sponding discrete Fourier transform (DFT) X ðkÞ, ! ¼
2"k=N is the angular frequency, and k 2 f0; . . . ;N " 1g).
The phase of the light curve is a nuisance parameter from
the viewpoint of detecting the planetary signature and can
be removed by taking the squared magnitude of the DFT,
PX ðkÞ ¼ jXðkÞj2, which is called the periodogram of the
time series xðnÞ. In the absence of noise, if the length of the
observations were a multiple of the orbital period, Tp, then
the periodogram would be zero everywhere except in fre-
quency bins with central frequencies corresponding to the
inverse of the orbital period, f0 ¼ T"1

p , and its multiples. If
the length of the observations is not an integral multiple of
the orbital period, the power in each harmonic is distributed
among a few bins surrounding the true harmonic frequen-
cies, since the FFT treats each data string as a periodic
sequence, and the length of the data is not consonant with
the true orbital period. The presence of wide-band measure-
ment noise assures that each point in the periodogram will
have nonzero power. Assuming that the expected relative
power levels at the fundamental and the harmonics are
unknown, one can construct a detection statistic by adding
together the periodogram values that occur at the frequen-
cies expected for the trial period Tp and then thresholding
the summed power for each trial period so that the summed
measurement noise is not likely to exceed the chosen thresh-
old. The statistic must be modified to ensure that it is consis-
tent since longer periods contain more harmonics than
shorter ones, and consequently, the statistical distribution
of the test statistics depends on the number of assumed
harmonics. This is equivalent to fitting a weighted sum of
harmonically related sinusoids directly to the data. Kay
(1998) describes just such a generalized likelihood ratio test
(GLRT) for detecting arbitrary periodic signals in WGN,
assuming a generalized Rayleigh fading model.4

The approach we consider is similar; however, we assume
the signals consist of no more than seven Fourier compo-
nents, and we relax the requirement that the measurement
noise be WGN. This is motivated by the observation that
the model light curves developed by Seager et al. (2000) are
not completely arbitrary and by the fact that the power
spectrum of solar-like variability is very red: most of the
power is concentrated at low frequencies. At low inclina-
tions, the reflected light curves are relatively smooth and
quasi-sinusoidal, exhibiting few harmonics in the frequency
domain. At high inclinations, especially for the !rr ¼ 1:0 lm
model, the presence of a narrow peak at opposition requires

3 A key point in searching for arbitrary periodic signals or even pure
sinusoids of unknown frequency is that no optimal detector exists (Kay
1998). The most prevalent approach is to use a generalized likelihood ratio
test, which forms a statistic based on the maximum likelihood estimate of
the parameters of the signal in the data. Such a detector has no pretenses of
optimality but has other positive attributes and often works well in
practice.

TABLE 3

Expected Transiting Close-in Extrasolar Giant Planets in
Kepler’s Field of View

Spectral Type

mR B5 A5 F5 G5 K5 M5 All

9.5...................... 0 0 0 0 0 0 1
10.5 .................... 0 1 1 0 0 0 2
11.5 .................... 1 2 2 1 0 0 6
12.5 .................... 2 4 6 4 1 0 17
13.5 .................... 3 9 17 12 3 0 44
14.5 .................... 4 16 45 37 10 1 111
Total .............. 10 32 71 54 14 1 181

4 In the Rayleigh fading model for a communications channel, a trans-
mitted sinusoid experiences multipath propagation so that the received
signal’s amplitude and phase are distorted randomly. A sinusoid of fixed
frequency can be represented as the weighted sum of a cosine and a sine of
the same frequency, with the relative amplitudes of each component
determining the phase. If both component amplitudes have a zero-mean
Gaussian distribution, then the phase is uniformly distributed and the
amplitude of the received signal has a Rayleigh distribution. The general-
ized Rayleigh fading model consists of a set of such signals with
harmonically related frequencies to model arbitrary periodic signals.
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the presence of about seven harmonics in addition to the
fundamental (above the background solar-like noise).
Another GLRT approach would be to construct matched
filters based directly on the atmospheric models themselves,
varying the trial orbital period, inclination, mean particle
size, etc. A whitening filter would be designed and each syn-
thetic light curve would be ‘‘ whitened ’’ and then correlated
with the ‘‘ whitened ’’ data.5 We choose not to do so for the
following reason: These models reflect the best conjectures
regarding the composition and structure of CEGP atmos-
pheres at this time, with little or no direct measurements of
their properties. A matched-filter approach based on these
models could suffer from a loss in sensitivity should the
actual planetary atmospheres differ significantly from the
current assumptions. On the other hand, the general shape
and amplitude predicted by the models are likely to be
useful in gauging the efficiency of the proposed detector.

Our detector procedure consists of taking the periodo-
gram as an estimate of the PSD of the observations, estimat-
ing the broadband background power spectrum of the
measurement noise, ‘‘ whitening ’’ the PSD, and then form-
ing detection statistics from the whitened PSD. We first
form a Hanning-windowed periodogram of the N-point
observations. For convenience, we assume that the number
of samples is a power of 2. For Kepler’s sampling rate,
fs ¼ 4 hr"1, N ¼ 217 points corresponds to 3.74 yr or about
4 yr. The broadband background, consisting of stellar varia-
bility and instrumental noise, is estimated by first applying a
21-point moving-median filter (which replaces each point by
the median of the 21 nearest points), followed by applying a

195-point moving-average filter (or boxcar filter). The
moving-median filter tends to reject outliers from its esti-
mate of the average power level, preserving signatures of
coherent signals in the whitened PSD. The length of 195
points for the moving average corresponds to the number of
frequency bins between harmonics of a 7 day period planet
for the assumed sampling rate and length of the observa-
tions. Both of these numbers are somewhat arbitrary: wider
filters reject more noise but do not track the power spectrum
as well as shorter filters do in regions where the PSD is
changing rapidly. This background noise estimate is divided
into the periodogram pointwise, yielding a ‘‘ whitened ’’
spectrum as in Figure 2. The advantage of whitening the
periodogram is that the statistical distribution of each fre-
quency bin is uniform for all frequencies except near the
Nyquist frequency and near DC (a frequency of 0), simplify-
ing the task of establishing appropriate detection thresh-
olds. The whitened periodogram is adjusted to have an
approximate mean of 1.0 by dividing it by a factor of
0.6931, the median of a #2

2ð2xÞ process. (This adjustment is
necessitated by the moving-median filter.) Finally, the value
1 is subtracted to yield a zero-mean spectrum. (The distribu-
tion of the periodogram of zero-mean, unit-variance WGN
is #2

2ð2xÞ; see, e.g., Papoulis 1984.) Finally, the detection
statistic for each trial period N= Kfsð Þ is formed by adding
the bins with center frequencies iKfs=N, i ¼ 1; . . . ;M
together, where M * 7, as in Figure 3. The trial periods are
constrained to be inverses of the frequency bins between 1

2
and 1

7 day
"1.

This procedure was applied to each of 450 model reflected
light curves spanning inclinations from 10% to 90%, orbital
periods from 2 to 7 days, stellar variability for stars with Prot
between 5 and 40 days, and instrumental and shot noise
corresponding to apparent stellar brightnesses between
R ¼ 9:0 and R ¼ 15:0. The combinations of these parame-
ters generated a total of 21,600 synthetic PSDs, for which
the corresponding detection statistics were calculated. The
number of assumed Fourier components was varied from
M ¼ 1 to M ¼ 7. Some results of these numerical trials are

5 For Gaussian observation noise and a deterministic signal of interest,
the optimal detector consists of a whitening filter followed by a simple
matched filter detector (Kay 1998). The function of the whitening filter is to
flatten the power spectrum of the observation noise so that filtered data can
be characterized as white Gaussian noise. Analysis of the performance of
the resulting detector is straightforward. For the case of non-Gaussian
noise, the detector may not be optimal, but it is generally the optimal linear
detector, assuming the distribution of the observation noise is known, and
in practice it often achieves acceptable performance.
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Fig. 2.—Process of applying the proposed detector to photometric data. (a) Periodogram of synthetic stellar variability for a solar-like star with a solar
rotation period of 26.6 days, mR ¼ 12, and an orbiting 1.2 RJ planet with an orbital period of 3 days; (b) ‘‘ whitened ’’ periodogram. The components of the
signal due to the planet appear at multiples of 13 day

"1. The fundamental is not the strongest component in the whitened spectrum, as it would be for the case of
white observational noise.

No. 1, 2003 REFLECTED LIGHT FROM GIANT PLANETS 435



summarized in Figure 4, which plots the maximum detect-
able orbital period, Pmax, for M ¼ 1 at a detection rate of
90% against I, for Prot ¼ 20, 25, and 35 days, for Sun-like
(G2 V) stars with apparent stellar magnitudes mR ¼ 9:5,
11.5, and 13.5. Detection thresholds and detection rates are
discussed in x 7.

For !rr ¼ 0:1 lm clouds (Fig. 4a), planets are detectable
out to P ¼ 4:75 days for Prot ¼ 35 days, out to P ¼ 3:7 days
for Prot ¼ 25 days, and out to P ¼ 3:1 days for Prot ¼ 20
days. The curves are rounded as they fall at lower inclina-
tions, and planets with I as low as 50% are detectable for all
the curves, while planets with I > 20% are detectable only
for stars with Prot ¼ 35 days. For clouds consisting of
!rr ¼ 1:0 lm particles (Fig. 4b), the curves of Pmax are more
linear, extending to orbital periods as long as 6 days for
Prot ¼ 35 days, as long as 4.8 days for Prot ¼ 25 days, and to
longer than 3 days at high inclinations for stars brighter
than mR ¼ 14. The detectability of both of these models at
high orbital inclinations would be improved by searching
for more than one Fourier component, (i.e., choosing a
higher value for M). This is a consequence of the larger
number of harmonics in the reflected light signature.
Although the power is distributed among more compo-
nents, as the orbital period increases, the signal is less sensi-
tive to the low-frequency noise power due to stellar
variability, which easily masks the low-frequency compo-
nents of the signal. The behavior of the maximum detectable
planetary radius for a Lambert sphere with p ¼ 0:15 (Fig.
4c) is very similar to the !rr ¼ 0:1 lmmodel of Seager et al. A
Lambert sphere with p ¼ 2

3 outperforms all the other mod-
els, as expected because of its significantly more powerful
signal. Planets in orbits up to nearly 7 days can be detected
for Sun-like stars with rotation periods of 35 days. For Sun-
like stars with rotation periods of 25 and 20 days, planets
are detectable with orbital periods up to 5.4 and 4.6 days,

respectively. The Lambert sphere model PSDs contain only
two Fourier components. Consequently, the detectability of
such signatures is not improved significantly by choosing
M > 1.

Now that we have specified the detector, we must analyze
its performance for the stellar population and expected
planetary population. We should also determine the opti-
mal number, Mopt, of Fourier components to search for, if
possible. The value of doing so cannot be overstated: higher
values ofM require higher detection thresholds to achieve a
given false alarm rate. If too large a value for M is chosen
then adding additional periodogram values for M > Mopt

simply adds noise to the detection statistic. This will drive
down the total number of expected detections. On the other
hand, if too small a value forM is chosen, then the sensitiv-
ity of the detector to CEGP signatures would suffer, and
here too the number of expected detections would not be
maximized. The first step is to determine the appropriate
threshold for the desired false alarm rate as a function ofM.
This is accomplished via Monte Carlo runs as presented in
x 7. To determine the best value ofM, we also need a model
for the population of target stars, which defines the observa-
tion noise, and a model for the distribution of CEGPs. We
use the Besançon Galactic model to characterize the target
star population (x 5). The distribution of CEGPs with orbi-
tal period can be estimated from the list of known CEGPs.
Moreover, we need a method for extrapolating solar-like
variability from that of the Sun to the other spectral types.
Two methods are considered and discussed in x 8. In the
first, the stellar variability is treated strictly as a function of
stellar rotation period, so that the detection statistics are
adjusted for the varying stellar size. In the second, it is
assumed that the mitigating effects of decreasing (increas-
ing) the stellar area toward cooler (warmer) late-type stars
are exactly balanced by an increase (decrease) in stellar vari-
ability; hence, no adjustment is made to the detection statis-
tics as a function of spectral type. Given this information,
we can then determine which value of M maximizes the
number of expected CEGP detections for a particular
atmospheric model.

We found that the optimal value of M depends a great
deal on the assumed stellar population and the distribution
of CEGPs with orbital period. If the rotation periods of
Kepler’s target stars were evenly distributed, then optimal
values for M varied from M ¼ 1 to 5, depending on the at-
mospheric model and method for extrapolating stellar vari-
ability across spectral type. Adopting a realistic distribution
of stellar rotation period and spectral type produced a sur-
prising result. We found that M ¼ 1 yielded the highest
number of detections, assuming all four of the atmospheric
models considered were equally likely. The number of detec-
tions for each atmospheric model as a function ofM and the
average number of detections across all four atmospheric
models are given in Table 4. The results of both methods for
extrapolating stellar variability across spectral type are
averaged together for this exercise. The effects of setting M
to 1 were not strong for the Seager et al.!rr ¼ 1:0 lmmodel in
which Mopt exceeded 1. In this case, M ¼ 2 or 3 was opti-
mal, depending on how stellar variability was extrapolated.
Up to 6% fewer CEGPs would be detected using M ¼ 1
rather than M ¼ 3 (174 vs. 185 total detections). For the
Seager et al. !rr ¼ 0:1 lm model and both Lambert sphere
models M ¼ 1 was optimal, although the average number
of detections drops slowly withM.

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
−200

0

200

400

600

800

1000

1200

1400

Trial Period, Days

De
te

ct
io

n 
St

at
ist

ic

Fig. 3.—Co-added spectrum corresponding to the time series in Fig. 2.
The periodogram has been co-added to itself so that the components of a
periodic signal appear in the same bin and thus dramatically increase the
chance of detection. Note the strong peak at 3 days, corresponding to the
period of the signal in the time series. This may not always be the case as it
depends on the strength of the fundamental compared with the background
stellar and instrumental noise. In any case, the presence of many strong
peaks at rational harmonics of the actual fundamental provide additional
confidence that a periodic signal has been detected, and their spacing
dictates the fundamental period.
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7. MONTE CARLO ANALYSIS

To determine the detection thresholds and the corre-
sponding detection rates, we performed Monte Carlo
experiments on WGN sequences. Much of this discussion
draws on that of Jenkins, Caldwell, & Borucki (2002), which
concerns the analogous problem of establishing thresholds
for transit searches. Each random time series was subjected

to the same whitening and spectral co-adding as described
in x 6. Two statistical distributions produced by these
Monte Carlo trials are of interest: that of the null statistics
for a single trial period and that of the maximum null statis-
tic observed for a search over all the trial periods. The for-
mer defines in part the probability of detection for a given
planetary signature and background noise environment,
since the distribution of the detection statistic in the pres-
ence of a planet can be approximated by shifting the null
distribution by the mean detection statistic. The latter dic-
tates the threshold necessary to control the total number of
false alarms for a search over a given number of stars.

Let l1;0ðMÞ denote the random process associated with
the null statistics for a single trial period and an assumed
number of Fourier components, M. Likewise, let lmax;0ðMÞ
denote the random process corresponding to the null statis-
tics for a search of a single light curve over all trial periods.
The corresponding cumulative distribution functions are
Pl1;0ðx; MÞ and Plmax;0ðx; MÞ, respectively.6 For N+ stars,
the thresholds $ðMÞ that yield a false alarm rate of 1=N+ for

Fig. 4.—Maximum detectable planetary period at a detection rate of 90% vs. orbital inclination for various stellar brightnesses and rotation periods and
4 yr of data for (a) the Seager et al. !rr ¼ 0:1 lm particle model; (b) the Seager et al. !rr ¼ 1:0 lm particle model; (c) a Lambert sphere with geometric albedo
p ¼ 0:15; and (d ) a Lambert sphere with p ¼ 2

3. The number of assumed Fourier components, M, is set to 1 here. Stellar rotation periods of 20, 25, and
35 days are denoted by dashed lines, solid lines, and dash-dotted lines, respectively. Stellar magnitudes mR ¼ 9:5, 11.5, and 13.5 are denoted by crosses, plus
signs, and open circles, respectively. The first three models yield comparable numbers of expectedCEGP detections. The Seager et al.!rr ¼ 1:0 lmparticle model
is easier to detect at longer periods at high orbital inclinations relative to the !rr ¼ 0:1 lm particle model or the p ¼ 0:15 Lambert sphere model. This is because
of the greater number of Fourier components, which can compensate for red noise from stellar variability that canmask lower frequency harmonics.

TABLE 4

Number of Expected Detections versus Assumed Number of
Fourier Components

AtmosphericModel

M !rr ¼ 1:0a !rr ¼ 0:1a p ¼ 2
3
b p ¼ 0:15b Average

1............ 173.7 168.7 738.0 158.9 309.8
2............ 184.7 155.3 736.6 146.9 305.9
3............ 183.8 140.4 719.7 130.8 293.7
4............ 175.0 126.7 706.6 117.6 281.5
5............ 165.8 116.1 693.6 107.7 270.8
6............ 159.1 108.6 683.2 101.0 263.0
7............ 152.9 102.5 675.6 96.0 256.8

a Atmospheric models from Seager et al. 2000 with mean particle radii !rr
in microns.

b Lambert sphere models with the given geometric albedos, p.

6 In this discussion, the cumulative distribution function of a random
variable y is defined as the probability that a sample will not exceed the
value x: PyðxÞ ¼ Pðy * xÞ. The complementary distribution function,
1" PyðxÞwill be denoted asQyðxÞ.
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each search are those values of x for which

Qlmax;0ðx;MÞ ¼ 1" Plmax;0ðx;MÞ ¼ 1" 1

N
ð3Þ

and hence, deliver a total expected number of false alarms
of exactly 1 for a search of N+ light curves. For a given
threshold $ and mean detection statistic !ll1ðMÞ correspond-
ing to a given planetary signature the detection rate PDðMÞ
is given by

PDðMÞ ¼ Pl1;0ð!ll1 " $;MÞ ; ð4Þ

where the explicit dependence of!ll1 and $ onM is suppressed
for clarity.

Figure 5a shows the sample distributions for Ql1;0ðx; MÞ
resulting from 6:19! 106 Monte Carlo trials for M ¼ 1, 3,
5, and 7. This represents the single-test false alarm rate as a
function of detection threshold. Figure 5b shows
Qlmax;0ðx; MÞ resulting from 1:3! 106 Monte Carlo runs, for
the same values ofM. This represents the single-search false
alarm rate as a function of detection threshold for each
value of M. Error bars denoting the 95% confidence inter-
vals appear at selected points in both panels. Figure 6 shows
corresponding sample distributions for PDðMÞ based on
those for Pl1;0 .

It is useful to model Pl1;0 and Qlmax;0 analytically. If the
whitening procedure were perfect, and assuming that the
observation noise were Gaussian (though not necessarily
white), l1;0 would be distributed as a #2

2M random variable
with a corresponding distribution Q#2

2M
ð2xþ 2MÞ.

Figure 5a shows the sample distributions for l1;0 resulting
from 6:19! 106 Monte Carlo runs. Higher values of M
require higher thresholds to achieve a given false alarm rate.
We fit analytic functions of the form

Ql1;0ðx; MÞ , Q#2
2M
ðAxþ BÞ ð5Þ

to the sample distributions Ql1;0ðx; MÞ, where parameters A

and B allow for shifts and scalings of the underlying
analytical distributions. Two methods for determining the
fitted parameters are considered. In the first, we fit the
analytic expressions directly to the sample distributions,
including the uncertainties in each histogram bin. The
resulting fit is useful for estimating the detection rate as a
function of signal strength above the threshold but may not
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Fig. 5.—Single-test (a) and single-search (b) false alarm rates as functions of detection threshold for the proposed detector. The number of assumed Fourier
components,M ¼ 1, 3, 5, and 7, is denoted by circles, asterisks, squares, and diamonds, respectively, for the sample distributions. For clarity, only every fifth
point of each sample distribution is plotted. The solid curves indicate the least-squares fits to the logarithm of the sample distributions, emphasizing the upper
tail in the fit. Error bars for 95% confidence intervals are denoted by vertical line segments crossed by horizontal line segments at various locations in each
sample distribution. The single-test false alarm rates can be used to estimate the detection rates for a given CEGP signal (see Fig. 6), while the single-search
false alarm rates determine the detection threshold for a given number of target stars and desired total number of false alarms. Determining the optimal value
ofM is important, given that higher values ofM require correspondingly higher detection thresholds, which drives down the number of detections if the chosen
value ofM is too high.
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Fig. 6.—Detection rate as a function of the signal strength above the
detection threshold (symbols) along with analytic expressions (curves) fitted
to the empirical distributions. The number of assumed Fourier com-
ponents, M ¼ 1, 3, 5, and 7, are denoted by circles, asterisks, squares, and
diamonds, respectively, for the sample distributions. The corresponding
analytical fits are denoted by dotted, dash-dotted, dashed, and solid curves,
respectively. For clarity, only every fifth point is plotted for the
sample distributions. At the threshold, the detection rate attains #60%.
This is because of the asymmetry of the distribution of null statistics. On
this scale, the empirical distribution functions and the analytic expressions
appear identical.
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fit the tail of the distribution well. In the second method, the
logarithm of the analytic function is fitted to the logarithm
of the sample distributions to emphasize the tail. The fitted
parameters are given in Table 5. Regardless of whether the
sample distribution or the logarithm sample distribution
is fitted, the values for A are within a few percent of 2 and
the values of B are no more than 14% different from
2M, indicating good agreement with the theoretical
expectations.

To determine the appropriate detection thresholds, we
need to examine the sample distributions Qlmax;0 . These are
likely to be well modeled as the result of taking the maxi-
mum of some number, NEIT, of independent draws from
scaled and shifted #2

2M distributions. Here, NEIT is the effec-
tive number of independent tests conducted in searching for
reflected light signatures of unknown period in a single light
curve. We take the values for A and B obtained from the fits
to the logarithm of Ql1;0ðx; MÞ and fit the logarithm of the
analytic functions of the form

Qlmax;0ðx;MÞ , 1" PNEIT

#2
2M

A; xþ Bð Þ ð6Þ

to the logarithm of the sample distributions Qlmax;0ðx; MÞ.
The values for NEIT are given in Table 5 and fall between
430 and 476. For the length of data considered, there are
#490 frequency bins corresponding to periods between 2
and 7 days; thus, the whitening and spectral co-adding oper-
ations apparently introduce some correlation among the
resulting detection statistics, somewhat reducing the total
number of independent tests conducted per search.

In determining the expected number of CEGPs whose
reflected light signaturesKeplerwill likely detect, we average
the detection rates from x 6 over all inclinations and over
the distribution of planetary periods of known CEGPs (see
x 5). The former can be accomplished by noting that inclina-
tion for randomly oriented orbits is distributed according to
the sine function. Table 6 contains the average detection
rates for 1.2 RJ planets orbiting Sun-like stars as functions
of stellar rotation period and apparent magnitude for all
four atmospheric models for a detector with M ¼ 1. These
results correspond to a false alarm rate of 1 in 105 light-
curve searches. The detection rate falls more rapidly with
decreasing stellar rotation period than it does with increas-
ing apparent stellar magnitude for the range of magnitudes
and rotation periods considered here. The atmospheric
models predicted by Seager et al. (2000) are sensitive to the

planet-star separation and are not likely to be accurate for
planets well within 0.04 AU or planets much beyond 0.05
AU. Most of the planets making up our assumed planetary
orbit distribution function fall within or close to these limits;
thus, we do not believe that departures from the simple
scaling suggested by Seager et al. (2000) are important in
estimating the number of CEGPs that Kepler will detect.
The detection rate is zero for stars with rotation periods
shorter than 20 days for all save the p ¼ 2

3 Lambert sphere
model, which can detect planets orbiting stars with Prot as
short as 15 days.

8. EXPECTED NUMBER OF DETECTIONS

In this section we use the results of x 5, x 6, and x 7, along
with statistics of the known CEGPs to estimate the expected
number of detections of CEGPs by reflected light forKepler.
As discussed in x 6, the results depend on M, the assumed
number of harmonics in the CEGP light curve. Here we dis-
cuss in detail only the results obtained by setting M ¼ 1,
which maximized the number of detections assuming all
four atmospheric models were equally likely. Throughout
this discussion we assume a uniform radius of 1.2 RJ for all
CEGPs. This is somewhat conservative: the only CEGP
with a known radius is the celebrated case of HD 209458b,
with a radius of 1.4RJ (Cody & Sasselov 2002).

Two methods to extrapolate stellar variability as a func-
tion of spectral type are considered. In the first, we assume
that the relationship between rotation period and stellar
variability holds for all spectral types, so that we modify the
detection rates by accounting for the dependence on the
signal amplitude with the area of the star, R"2+ . That is, the
PSD of stellar variability is assumed to be a function of
stellar rotation period alone, while the amplitude of the
planetary signature also depends on the size of the star. We
denote this method as spectral type compensation method
A. The second method, B, starts with the general observa-
tion that warmer late-type stars tend to bemore photometri-
cally quiescent than cooler late-type stars at timescales
relevant to detecting CEGPs and further assumes that this
relationship compensates exactly for the dependence of sig-
nal strength on stellar radius; that is, for this model no
adjustment for stellar radius is made to the amplitude of the
planetary signature. The validity of these approaches will be
tested by Kepler and the other upcoming photometry space
missions. An important point is that the proposed detector

TABLE 5

Analytical Fits to Monte Carlo Null Distributions

Single-Test Direct Fita Single-Test Fit to Taila Fit to Single Searchb

M A B A B NEIT Thresholdc

1................ 2.110 2.114 1.923 2.691 451.81 16.9
2................ 2.106 4.231 1.936 4.911 429.73 18.8
3................ 2.104 6.346 2.001 6.738 462.57 20.0
4................ 2.104 8.460 1.995 9.002 463.56 21.3
5................ 2.103 10.574 2.006 11.082 469.40 22.3
6................ 2.103 12.688 1.980 13.548 459.68 23.5
7................ 2.104 14.801 2.037 15.170 476.03 24.1

a The fit is of the formPl1;0 ðx; MÞ , P#2
2M

Axþ Bð Þ.
b The fit is of the form Plmax;0 ðx; MÞ , PNEIT

#2
2M

Axþ Bð Þ, where A and B are fits to the tail of the single-test
distributions.

c Threshold for a false alarm rate of 1 in 105 searches of stellar light curves.
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can be tuned to the actual observation noise via Monte
Carlo techniques since CEGPs are relatively rare. The two
approaches considered here are not expected to be 100%
valid but should produce reliable estimates for the number
of CEGPsKepler can expect to detect.

The expected number of CEGPs detected under spectral
type compensation method A are given in Table 7, which
lists the number of detected planets for each of the four
planetary atmospheric models. The Seager et al. !rr ¼ 1:0 lm
and !rr ¼ 0:1 lm models and the Lambert sphere model with
p ¼ 0:15 all detect about the same number of planets: #120
to mR ¼ 14:0 and #220 to mR ¼ 15:0. For G-type stars,
#65 CEGPs to mR ¼ 14:0 and #114 CEGPs to mR ¼ 15:0
should be detected for each of these models. Among the four
atmospheric models and spectral type compensation
method A, the Lambert sphere model with p ¼ 2

3 stands out.
In this case, 230 and 712 CEGPs would be detected to

mR ¼ 14:0, and mR ¼ 15:0, respectively. A little over half
these detections would occur around G-type stars. In con-
trast to the other atmospheric models, significant numbers
of CEGPs would be detected around F-type stars, in
addition to G-, K-, andM-type stars.

Table 8 contains the estimates for the number of CEGPs
detected under spectral type compensation method B. Here
for the Seager et al. models and for the p ¼ 0:15 Lambert
sphere, the number of expected detections drop by about
#40% to mR ¼ 14:0 and by #50% to mR ¼ 15:0. About 80
planets are detected to mR ¼ 14:0 (#55 orbiting G-type
stars), and #115 planets are detected to mR ¼ 15:0 (#80
orbiting G-type stars). In contrast, the p ¼ 2

3 Lambert sphere
model detects#8% more planets than it does for method A.
The reason for the differences between method A and
method B is that the detections are shifted to earlier type
stars. The p ¼ 2

3 Lambert sphere model gains detections

TABLE 6

Average Detection Rate for 1.2RJ Planets Orbiting Sun-like Stars

Rate at Apparent StellarMagnitude (mR)

Prot

(days)
9.5 mag
(%)

10.5 mag
(%)

11.5 mag
(%)

12.5 mag
(%)

13.5 mag
(%)

14.5 mag
(%)

!rr ¼ 1:0 lmParticles

5...................... 0.0 0.0 0.0 0.0 0.0 0.0
10.................... 0.0 0.0 0.0 0.0 0.0 0.0
15.................... 0.0 0.0 0.0 0.0 0.0 0.0
20.................... 12.2 12.0 11.8 10.8 8.2 2.6
25.................... 36.0 35.7 34.6 31.8 24.0 8.2
30.................... 49.6 48.7 47.4 43.5 33.2 13.3
35.................... 59.3 58.2 55.3 53.0 40.8 15.9
40.................... 66.5 65.9 64.4 56.6 44.6 16.8

!rr ¼ 0:1 lmParticles

5...................... 0.0 0.0 0.0 0.0 0.0 0.0
10.................... 0.0 0.0 0.0 0.0 0.0 0.0
15.................... 0.0 0.0 0.0 0.0 0.0 0.0
20.................... 10.8 10.6 10.3 9.9 5.1 0.0
25.................... 36.5 36.3 35.7 34.0 25.8 5.0
30.................... 53.5 53.2 51.6 48.3 39.2 9.5
35.................... 62.9 62.1 60.4 58.2 46.9 10.0
40.................... 72.0 71.5 68.8 64.4 51.1 10.2

Albedo p ¼ 0:15 Lambert Sphere

5...................... 0.0 0.0 0.0 0.0 0.0 0.0
10.................... 0.0 0.0 0.0 0.0 0.0 0.0
15.................... 0.0 0.0 0.0 0.0 0.0 0.0
20.................... 6.8 6.7 6.3 4.9 1.0 0.0
25.................... 38.6 38.4 37.5 34.0 25.4 1.2
30.................... 56.6 56.4 55.9 52.7 42.4 4.6
35.................... 67.3 67.1 65.6 61.2 50.0 5.6
40.................... 75.6 75.4 74.4 70.1 54.7 5.9

Albedo p ¼ 2
3 Lambert Sphere

5...................... 0.0 0.0 0.0 0.0 0.0 0.0
10.................... 0.0 0.0 0.0 0.0 0.0 0.0
15.................... 39.0 39.0 39.0 38.9 38.8 37.5
20.................... 67.1 67.1 67.0 66.9 66.3 64.3
25.................... 82.4 82.4 82.4 82.3 81.9 78.8
30.................... 84.1 84.1 84.1 84.1 83.6 80.9
35.................... 93.9 93.9 93.8 93.4 92.4 84.6
40.................... 97.3 97.3 97.2 96.4 95.6 89.1

Note.—Rates are given in percent.
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because there are more F-type target stars than G-type
target stars according to the Galactic model, which offsets
the lower detectability of the CEGP signal for the faster
rotating F stars. The detectabilities of the CEGP signals for
the other atmospheric models are more sharply reduced for
F stars, so that while the detections shift toward F stars, an
insufficient number are gained to offset the reduced number
of detections for later star types.

As expected, more detections are obtained if stars as dim
as mR ¼ 15:0 are observed. There are 132,000 more stars
between mR ¼ 14:0 and mR ¼ 15:0 than there are to
mR ¼ 14:0 (#80,000), for a total of #200,000 main-
sequence stars in the FOV. Kepler’s downlink and onboard
storage system are capable of handling #200,000 target
stars for the first year of operation and#140,000 thereafter.
The most promising targets are those stars with long rota-
tion periods. This can be ascertained after several months of
observation once a good PSD estimate can be obtained and
the detection rates can be estimated. It is likely that the
#200,000 main-sequence stars to mR ¼ 15:0 in Kepler’s
FOV can be pared down to#140,000 during the first year of

observation; thus, Kepler can be expected to detect the
reflected light signatures of between 100 and 760 CEGPs
(see Tables 7 and 8). Note that the detections should be
evenly distributed in time: the energy of a reflected light sig-
nature is directly proportional to the length of its time series;
thus, approximately 25% of the discoveries, or between 25
and 190 CEGPs, should be detected by reflected light within
the first year of theKeplermission.

The highest detection rates occur for edge-on planetary
orbits: those most likely to produce transits. Between 14%
and 40% of the CEGPs detected by reflected light will
exhibit transits, depending on the assumed atmospheric
model and stellar variability model. These planets present
an opportunity to extract the shape of the occultation of the
planet by its star. In this case, the average brightness or DC
level of the reflected light signature can also be determined,
which is not the case for nontransiting CEGPs. Moreover,
since the transits will almost certainly be detected in the first
several weeks of the mission, the requisite thresholds for
detecting the reflected light signatures can be significantly
reduced, since the period is constrained by the observations

TABLE 7

Number of Close-in Extrasolar Giant Planets Detected

Spectral Type

mR B5 A5 F5 G5 K5 M5 All

!rr ¼ 1:0 lmParticles

9.5...................... 0 0 0 0 0 0 1
10.5 .................... 0 0 0 1 1 0 2
11.5 .................... 0 0 0 5 2 0 7
12.5 .................... 0 0 1 14 7 0 23
13.5 .................... 0 0 2 37 22 1 62
14.5 .................... 0 0 0 54 60 5 120
Total .............. 0 0 3 112 91 7 214

!rr ¼ 0:1 lmParticles

9.5...................... 0 0 0 0 0 0 1
10.5 .................... 0 0 0 1 1 0 2
11.5 .................... 0 0 0 5 2 0 7
12.5 .................... 0 0 1 16 7 0 24
13.5 .................... 0 0 2 42 23 1 68
14.5 .................... 0 0 0 50 64 5 119
Total .............. 0 0 3 115 96 7 222

Lambert Sphere, p ¼ 0:15

9.5...................... 0 0 0 0 0 0 1
10.5 .................... 0 0 0 2 1 0 2
11.5 .................... 0 0 0 5 2 0 8
12.5 .................... 0 0 1 17 7 0 25
13.5 .................... 0 0 1 46 22 1 71
14.5 .................... 0 0 0 45 60 5 110
Total .............. 0 0 3 115 92 7 216

Lambert Sphere, p ¼ 2
3

9.5...................... 0 0 0 1 0 0 1
10.5 .................... 0 0 1 3 1 0 4
11.5 .................... 0 0 4 9 2 0 15
12.5 .................... 0 0 13 29 8 0 50
13.5 .................... 0 0 38 93 27 1 160
14.5 .................... 0 0 104 283 90 5 482
Total .............. 0 0 160 417 128 7 712

Note.—For these detections, the signal has been adjusted for stellar
radius.

TABLE 8

Number of Close-in Extrasolar Giant Planets Detected

Spectral Type

mR B5 A5 F5 G5 K5 M5 All

!rr ¼ 1:0 lmParticles

9.5...................... 0 0 0 0 0 0 0
10.5 .................... 0 0 0 1 0 0 2
11.5 .................... 0 0 1 4 1 0 6
12.5 .................... 0 0 2 13 3 0 19
13.5 .................... 0 0 6 32 9 1 48
14.5 .................... 0 0 6 40 11 1 59
Total .............. 0 0 16 91 25 2 133

!rr ¼ 0:1 lmParticles

9.5...................... 0 0 0 0 0 0 0
10.5 .................... 0 0 0 1 0 0 2
11.5 .................... 0 0 1 5 1 0 6
12.5 .................... 0 0 3 14 4 0 21
13.5 .................... 0 0 5 36 10 1 52
14.5 .................... 0 0 3 24 7 1 34
Total .............. 0 0 12 81 22 2 116

Lambert Sphere, p ¼ 0:15

9.5...................... 0 0 0 0 0 0 0
10.5 .................... 0 0 0 1 0 0 2
11.5 .................... 0 0 1 5 1 0 7
12.5 .................... 0 0 2 15 4 0 21
13.5 .................... 0 0 4 38 10 1 53
14.5 .................... 0 0 1 13 3 0 18
Total .............. 0 0 8 72 19 1 102

Lambert Sphere, p ¼ 2
3

9.5...................... 0 0 1 1 0 0 1
10.5 .................... 0 0 2 2 1 0 5
11.5 .................... 0 0 6 9 2 0 16
12.5 .................... 0 0 19 28 7 0 55
13.5 .................... 0 0 58 89 24 1 173
14.5 .................... 0 0 161 272 76 5 514
Total .............. 0 0 247 400 110 6 764

Note.—For these detections, the signal has not been adjusted for stellar
radius.

No. 1, 2003 REFLECTED LIGHT FROM GIANT PLANETS 441



of the transits. Given that #181 CEGPs in the FOV will
exhibit transits, we should be able to constrain if not
measure the albedos quite well.

While solar variability may certainly not be safely
extrapolated to significantly different stellar classes, detec-
tions of CEGPs might also be possible around G3 through
early K giants because of their expected low rotation rates,
if the rotation period criteria in this study are found to be
applicable to giant stars. M giants might be too large to
allow very close planets (see, e.g., Gray 1992); however, K
giants, because of their increased mass, would allow planets
50% more distant with the same orbital periods discussed
above.

9. POTENTIAL SOURCES OF CONFUSION AND
METHODS OF DISCRIMINATION

Detection algorithms detect all signals of sufficient ampli-
tude with features that are well matched to the shape of the
signal of interest.7 Thus, not all signals yielding detection
statistics above the detection threshold need be signatures
of CEGPs. Indeed, several potential sources of confusion
exist that might inject signals similar to reflected light
signatures of CEGPs. These include intrinsic photometric
variability of target stars themselves, and dim background
variable stars within the photometric apertures of target
stars. Such variations include those produced by starspots,
eclipsing or grazing eclipsing binaries, or intrinsic stellar
pulsations. Section 9.1 describes each of these classes of
variability along with an assessment of the likelihood they
pose as sources of confusion. Section x 9.2 presents a robust
method for rejecting confusion from blended variable
background stars in a target star’s photometric aperture.

9.1. Potential Sources of Confusion

Sources of stellar variability that might be mistaken for
reflected light signatures of CEGPs include stellar pulsa-
tions, starspots, and photometric variability induced by
binarity. These phenomena can occur in the target star or in
a blended background star, but the amplitudes of concern
are different since the magnitude of the variations of a
blended background star will be diluted by the flux of the
target star. In addition, nonreflected light signatures of
CEGPs might be present, confounding the isolation and
detection of the reflected light signature. In this section we
discuss these sources of photometric variability and assess
the likelihood that each poses as a source of confusion.

CEGPs can induce periodic photometric variations other
than that due to reflected light. Doppler modulation of the
host stellar spectrum via reflex motion of the host star about
the system barycenter modulates the total flux observed in
the photometer’s bandpass. Loeb & Gaudi (2003) estimate
the amplitude of this effect and conclude that Doppler-
induced photometric variations for Jupiter-mass planets
orbiting solar-type stars in periods less than 7 days are
about 20 times fainter than the reflected light signature of
Jupiter-sized p ¼ 2

3 Lambert spheres. The Doppler-induced

photometric signal is 90% out of phase with that of the
reflected light component from a CEGP; hence, rather than
making it more difficult to detect a CEGP, the combination
of the two signatures makes it easier to detect one since the
power from orthogonal signals adds constructively in the
frequency domain. Radial velocity measurements should
help distinguish between the two signatures in the case of
nontransiting CEGPs.

Stellar pulsations can cause strictly periodic photometric
variations. Acoustic waves traveling in the Sun resonate at
specific frequencies with characteristic periods on the order
of 5 minutes and typical amplitudes of#10 ppm. The coher-
ence lifetime for these so-called p-mode oscillations is
approximately a month, beyond which the sinusoidal
components drift out of phase (Deubner & Gough 1984).
Buoyancy waves (also called gravity waves) should have
much longer periods of 0.28–2.8 hr, along with correspond-
ingly longer coherence timescales. To date, no one has
observed the signatures of g-modes in the Sun. The VIRGO
experiment aboard SOHO has placed upper limits of 0.5
ppm on the amplitudes of solar g-modes (Appourchaux et
al. 2000), which is in line with theoretical predictions
(Andersen 1996). It does not appear that pulsations of
solar-like stars could present major problems: the coherence
timescales are short and the amplitudes are significantly
smaller than those due to the reflected light component from
CEGPs. Moreover, the amplitudes preclude stellar pulsa-
tions of background blended stars from being confused with
signatures of CEGPs due to dilution.

Long-lived starspots or groups of spots can produce
quasi-sinusoidal photometric signatures. Some individual
starspot groups of F, G, and K dwarfs have been known to
last for months to years and cover an appreciable fraction
of the star’s surface (20%–40% in extreme cases; Cram &
Kuhi 1989), with the starspot cycles themselves lasting from
a half to several decades for nearby solar-type stars
(Baliunas & Vaughan 1985). Contributions to solar varia-
bility at tens of minutes come from granulation and are
present in only a few tens of parts per million, while sun-
spots contribute a variation of about 0.2% over days or
weeks. Faculae can also contribute variations of about 0.1%
over tens of days and last longer than individual sunspots,
because differential rotation distributes these over the whole
solar disk (Hudson 1988). It is difficult to imagine that star-
spots on solar-like single stars could be easily confused with
CEGPs. On the Sun, for example, individual sunspots
evolve and change continuously on timescales comparable
to the mean solar rotation period (26.6 days); thus, the
photometric signatures of sunspots vary from rotation to
rotation so that the photometric dips due to spots do not
repeat with a great degree of precision. In the Fourier
domain it can be difficult to identify the fundamental associ-
ated with the solar rotation period: the peak is extremely
broad. Of more concern, then, are photometric variations
from dim background late-type binaries, such as BY Dra or
RS CVn variables.

The BY Draconis variables are dKe and dMe stars with
typical differential amplitudes of 0.2 mag and periods of a
few days. For example, in photometric observations of CM
Draconis (M4 + M4, 1.27 day period), Lacy (1977) noted a
#0.01 mag sinusoidal feature he attributed to a long-lived
high-latitude spot group that persisted for years. RS CVn
stars are generally eclipsing binaries consisting of at
least one subgiant component. These stars display nearly

7 An exception to this rule is provided by the incoherent matched filter
or ‘‘ energy detector ’’ that thresholds the variance of a time series. This
detector is not sensitive to the shape of the input signal and consequently
suffers inferior performance relative to a matched filter when the shape of
the target signal is well defined (see, e.g., Kay 1998).
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sinusoidal variations of up to 0.6 mag. The photometric var-
iations are due to an uneven distribution of cool spots in
longitude that rotationally modulate the apparent flux. For-
tunately, one way of distinguishing these variations from
the phase variations of CEGPs is the fact that starspot activ-
ity of these stars varies with phase over time. Kozhevnikov
& Kozhevnikova (2000) found that the quasi-sinusoidal
starspot variation of CM Dra had shifted by 60% in phase
over a two-decade period and had increased in amplitude
(to#0.02 mag). The eponymous BYDra (M0 Ve + M0 Ve)
has a mean photometric period of 3.836 days and can dem-
onstrate rather fickle photometric behavior: the nearly
sinusoidal variations discovered by Chugainov (1973)
nearly disappeared bymid-1973. The light curves for several
BY Dra and RS CVn stars can be explained by the presence
of two large spots on one of the stellar components. As the
spots evolve and migrate in longitude, the photometric var-
iations change significantly (see, e.g., Rodonó et al. 1986).
Some RS CVn systems with orbital rotation periods of
several days exhibit remarkable photometric variations over
timescales of months. The RS CVn binary V711 Tau (K0
V + B5 V), for example, has an orbital period of 2.84 days,
and migration of spot groups in longitude leads to changes
in its ‘‘ photometric wave ’’ including the exhibition of
double peaks, nearly sinusoidal variations, and rather flat
episodes (Bartolini et al. 1983). Starspot-induced variations
do not seem likely candidates for being mistaken for reflec-
ted light signatures of CEGPs, even for binary systems.

Ellipsoidal variables (e.g., o Persei, B1 III + B2 III,
period equal to 4.42 days, differential amplitude 0.07 mag in
V ) are noneclipsing binaries that display photometric varia-
tions due to the changing rotational aspect of their tidally
elongated shapes (Sterken & Jaschek 1996). These stars’
light curves exhibit two maxima and two minima per orbital
period, and one minimum can actually be significantly
deeper than the other; thus, we do not expect that ellipsoidal
variables will be mistaken for CEGPs as the shape of the
variations is significantly different from that expected for
CEGPs.

It is unlikely that photometric variations of binary target
stars will be confused with CEGPs. The Kepler mission will
be preceded by ground-based observations to characterize
all the stars in the FOV with mR * 16. These observations
should be able to detect almost all the short-period binaries.
Moreover, ground-based follow-up observations should be
able to detect any of these types of variable stars in the cases
in which one might have been mistakenly classified. These

follow-up observations should help discriminate between
planetary and stellar sources for any candidate signatures of
CEGPs. Nevertheless, we should examine the frequency of
such binary systems in the photometric apertures of target
stars and Kepler’s ability to distinguish between photo-
metric variability intrinsic to a target and that due to
blended background variables.

In a study of the light curves of 46,000 stars in the cluster
47 Tuc, Albrow et al. (2001) identified 71 likely BYDra stars
that exhibited photometric variations as high as 0.2 mag.
The fraction of stars that are in binary systems is signifi-
cantly lower in 47 Tuc (#14%) than it is in the Galactic disk
(#65%, as per Duquennoy & Mayor 1991). The peak-
to-peak amplitudes of the CEGP reflected light curves
considered here are between 20 and 60 ppm, so that back-
ground BY Dra binaries would need to be #8 mag dimmer
than a particular target star to exhibit photometric varia-
tions of the appropriate amplitude. We determined the dis-
tribution of late-type (G, K, andM) stars withmR ¼ 17:0 to
23.0 corresponding to the range of apparent magnitudes for
Kepler target stars discussed in x 8 using the Besançon
Galactic model. The number of binary systems with rota-
tion periods between 2 and 7 days can be estimated using
the Gaussian model of Duquennoy & Mayor (1991) for the
distribution of binaries as a function of the logarithm of the
period. According to this distribution, #1.75% of binaries
in the Galactic disk should have periods in this range. Table
9 gives the number of background binaries with periods in
this range consisting of at least one dwarf G, K, or M star in
each aperture of a Kepler target star. The apertures vary
from 400 arcsec2 for mR ¼ 9:5 stars, to 200 arcsec2 for
mR ¼ 14:5 stars, with a corresponding number of back-
ground binaries varying from 13 to 69, respectively. Even if
such a system appears in the photometric aperture of
a target star, it is likely that it can be detected by observ-
ing the centroid of the brightness distribution over time
(R. Gilliland 2001, private communication), as discussed
in x 9.2.

9.2. Method toMitigate Confusion from Blended
Background Stars

Since Kepler will return target star pixels rather than
stellar fluxes to the ground, it will be possible to construct
centroid time series for all the target stars. This represents a
robust and reliable means to discriminate between sources
of variability intrinsic to a target star and those due to

TABLE 9

Number of Background Binaries Not Excluded by Astrometry

Apparent StellarMagnitude (mR)

Parameter 9.5 mag 10.5 mag 11.5 mag 12.5 mag 13.5 mag 14.5 mag

Number of background binaries in target aperturesa .............. 3 18 85 296 903 2405
Centroid rejection radius (arcsec)b ......................................... <0.5 <0.5 <0.5 <0.5 <0.5 0.7
Aperture size (arcsec2)............................................................ 400 384 352 288 240 192
Number of potential false alarmsc .......................................... 0 0 0 1 3 18

a The background binaries of concern have periods between 2 and 7 days and are 8 mag fainter than the target stars. See Table 1 for the
number of target stars in eachmagnitude bin.

b Background variables can be rejected outside this radius with a confidence level of 99.9%.
c These are the expected numbers of background variables that cannot be rejected simply by examiningKepler data. Follow-up observations

may be necessary to distinguish them from CEGPs if the objects display coherent periodic light curves over the 4 yr duration of Kepler’s
observations.
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background variable stars situated within the target stars’
photometric aperture. Suppose that the background
variable located at x2 is separated from the target star
located at x1 by Dx ¼ x2 " x1 and that its brightness
changes by %b2 from a mean brightness of !bb2, while the
target star’s mean brightness is !bb1. Then the change in the
photometric centroid position %xc with respect to the mean
position is given by

%xc ¼ %b2Dx= 1þ !bb1=!bb2
! "# $

: ð7Þ

Thus, a background star 8 mag dimmer than the target
star separated by 100 and exhibiting a change in brightness of
10% will cause the measured centroid to change by 63 las.
The uncertainty in the centroid, however, is determined
largely by the Poisson statistics of the stellar flux signal and
the random noise in each pixel. For Kepler’s point-spread
function (PSF), the uncertainty of the centroid of an
mR ¼ 9:5 star measured over a 24 hr interval is #16 las (on
a single axis). At a magnitude ofmR ¼ 13:5, the correspond-
ing uncertainty is #118 las. Note, however, that we are not
limited to the resolution of a centroid over a short interval:
Equation (7) implies that the time series of the displacements
of the target star’s centroid will be highly correlated with the
photometric variations if the latter are caused by a variable
background star offset sufficiently from the target star. This
fact implies that the centroid time series of a star can be sub-
jected to a periodogram-based test to determine whether
there are statistically significant components at the photo-
metric period. We performed numerical experiments with
the PSF for Kepler and the expected shot and instrumental
noise to determine the radius to which background variables
can be rejected at a confidence level of 99.9% for four years
of observation. The expected accuracy of the centroids given
above assumes that errors in pointing can be removed per-
fectly by generating an astrometric grid solution for Kepler’s
target stars. At some magnitude, systematic errors will
become significant. Here, we assume that the limiting radius
inside which we cannot reject false positives is 1

8 pixels, or
0>5. Better isolation of background binaries might be
obtained in practice for stars brighter than mR ¼ 14:0. The
relevant figures for these calculations are given in Table 9,
showing that Kepler should be able to reject almost all such
false positives for mR < 14:0. A significant number (28) of
false positives might occur for target stars with
14:0 < mR < 15:0. These would require further follow-up
observations to help discriminate between background vari-
ables and signatures of CEGPs. We note, however, that this
assumes that the background variables display periodic
signatures that retain coherence over several years. As
discussed in x 9.1, this is generally not the case.

In summary, we do not expect intrinsic stellar variations
to mimic signatures of CEGPs over timescales of years. The
Kepler mission incorporates a robust set of ground-based
follow-up observations that include radial velocity studies
as well as Ca ii H and K emission-line studies that can con-
firm starspot periodicities. The Doppler signatures of any
candidate planets obtained by reflected light can also be
assessed by radial velocity measurements, a relatively easy
task for those stars with mR * 12. We note that between
14% and 40% of the CEGPs detected by reflected light will
also exhibit transits, which, together with the reflected light
signatures, will provide another means of confirming many
of the candidates.

10. CONCLUSIONS

Although tailored for seeking Earth-sized planets via
transit photometry, NASA’s Kepler mission is well posi-
tioned to detect from 100 to #760 close-in giant inner
planets (CEGPs) by reflected light, depending on the pres-
ence of clouds and their structure and composition. The
detector used in this analysis has a threshold designed to
produce no more than one false alarm for the entire cam-
paign. Further, a combination of analysis of the candidate
stars’ centroids and follow-up observations should reject
most false positives due to the injection of quasi-sinusoidal
variations into the target stars’ apertures by variable stars.
For a given atmosphere, the detectability is most sensitive to
the stellar rotation period, although stellar magnitude
becomes important for mR > 12:5. We can state that it
should be possible to discriminate between an atmosphere
composed of !rr ¼ 0:1 lm clouds and one composed of
!rr ¼ 1:0 lm clouds at high orbital inclinations, given the
great difference between the Fourier expansions of the pre-
dicted light curves. Both the !rr ¼ 1:0 lm and !rr ¼ 0:1 lm
cloud models of Seager et al. and a p ¼ 0:15 Lambert sphere
model yield a comparable number of detections: #120 to
mR ¼ 14 and #220 to mR ¼ 15. If CEGP atmospheres are
better characterized as p ¼ 2

3 Lambert spheres, then #250
and #760 CEGPs will be detected to mR ¼ 14 and to
mR ¼ 15, respectively. This analysis is based on realistic yet
preliminary models for CEGP atmospheres, as well as a
simple stellar variability model extrapolated from high-
precision photometric observations of the Sun. Clearly, the
various near-term microsatellite photometry missions will
permit development of better models of stellar variability
for a variety of main-sequence stars. Further, observations
of stars with known CEGPs by these missions may stimulate
development of more comprehensive atmospheric models.
Future work should incorporate emerging theories of
CEGP atmospheres and space-based photometry of a wider
range of spectral types and luminosity classes as they
become available. It should also address the inverse
problem of determining atmospheric parameters from
reflected light curves reconstructed from synthetic observa-
tions. This exercise may also better constrain the structure
of the Fourier series of such light curves, permitting the
design of better detection algorithms.
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Rodonó,M., et al. 1986, A&A, 165, 135
Schneider, J., et al. 1998, in ASP Conf. Ser. 148, Origins, ed. C. E.
Woodward, J. M. Shull, & H. A. Thronson, Jr. (San Francisco: ASP),
298

Seager, S.,Whitney, B. A., & Sasselov, S. S. 2000, ApJ, 540, 504
Sterken, C., & Jaschek, C. 1996, Light Curves of Variable Stars
(Cambridge: Cambridge Univ. Press)

Walden, A. T., Percival, D. B., & McCoy, E. J. 1998, IEEE Trans. Signal
Processing, 46, 3153

West, R. A., Stobel, D. F., & Tomasko,M. G. 1986, Icarus, 65, 161
Willson, R. C., &Hudson, H. S. 1991, Nature, 351, 42

No. 1, 2003 REFLECTED LIGHT FROM GIANT PLANETS 445


